
Theory of fractional vortex escape in a long Josephson junction

K. Vogel,1 W. P. Schleich,1 T. Kato,2 D. Koelle,3 R. Kleiner,3 and E. Goldobin3,*
1Institut für Quantenphysik, Universität Ulm, D-89069 Ulm, Germany

2Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
3Physikalisches Institut–Experimentalphysik II and Center for Collective Quantum Phenomena, Universität Tübingen,

Auf der Morgenstelle 14, D-72076 Tübingen, Germany
�Received 30 December 2008; revised manuscript received 27 July 2009; published 20 October 2009�

We consider a fractional Josephson vortex in an infinitely long 0-� Josephson junction. A uniform bias
current applied to the junction exerts a Lorentz force acting on a vortex. When the bias current becomes equal
to the critical �or depinning� current, the Lorentz force tears away an integer fluxon and the junction switches
to the resistive state. In the presence of thermal and quantum fluctuations this escape process takes place with
finite probability already at subcritical values of the bias current. We analyze the escape of a fractional vortex
by mapping the Josephson phase dynamics to the dynamics of a single particle in a metastable potential and
derive the effective parameters of this potential. This allows us to predict the behavior of the escape rate as a
function of the topological charge of the vortex.
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I. INTRODUCTION

Josephson junctions �JJs� with a phase drop of � in the
ground state �� JJs �Ref. 1�� are intensively investigated, as
they promise important advantages for Josephson junction
based electronics,2,3 and, in particular, for JJ based qubits.4–7

Nowadays several technologies allow to manufacture such
junctions: JJs with ferromagnetic barrier,8–10 quantum dot
JJs11–13 and nonequilibrium superconductor-normal metal-
superconductor JJs.14,15

One can also fabricate 0-� long Josephson junctions �0-�
LJJs�,16–20 i.e., LJJs some parts of which behave as 0 junc-
tions and other parts as � junctions. The ground-state phase
��x� in such junctions will have the value of 0 deep inside
the 0 region, the value of � deep inside the � region and will
continuously change from 0 to � in the �J vicinity of a 0-�
boundary, where �J is the Josephson penetration depth. Such
a bending of the phase results in the appearance of the mag-
netic field �d� /dx localized in the �J vicinity of a 0-�
boundary and the supercurrents �sin���x�� circulating
around it, i.e., one deals with a Josephson vortex. The total
magnetic flux localized at the 0-� boundary is equal to
	0 /2, where 	0�2.07
10−15 Wb is the magnetic flux
quantum. Therefore, such a Josephson vortex is called a
semifluxon.21–23 If the Josephson phase ��x� deep inside the
� region is equal to −� instead of �, one will have a local-
ized magnetic flux equal to −	0 /2 and a supercurrent of the
vortex circulating counterclockwise �antisemifluxon�. Both
semifluxons and antisemifluxons were observed
experimentally24 and have been under extensive experimen-
tal and theoretical investigation during the last decade.17,24–37

It turns out that instead of a � discontinuity of the Joseph-
son phase at a 0-� boundary one can artificially create any
arbitrary � discontinuity of the phase at any point of the LJJ,
and the value of � can be tuned electronically.31 As a result,
in the ground state two types of vortices with the topological
charges ����+��−��−��=−� and �=−�+2� sgn��� �we
assume that ����2�, otherwise we have to deal with addi-
tional fluxons present in the system� can be formed.33 Such �

vortices are generalizations of semifluxons and antisemiflux-
ons discussed above. They are stable only if ����2�. For
�→0 one has a smooth transition to an empty LJJ, while for
���→2� one gets the conventional integer �anti� fluxon,
which is a freely moving soliton carrying the flux �	0. The
possibility to change the value of � and, therefore, � elec-
tronically offers more control and tunability in experiments.
For example, in a two antiferromagnetically arranged frac-
tional vortex molecule having classically degenerate ground
states ↑↓ and ↓↑, one can tune the height of the energy bar-
rier separating these two states.

When one has a vortex with a topological charge � �with-
out loosing generality we assume 0���2�� and applies a
spatially uniform bias current through the LJJ, the bias cur-
rent exerts a Lorentz force, which pushes the vortex along
the junction. The direction of the force depends on the mu-
tual polarity of the vortex and the bias current. The vortex
exists just because it should compensate the phase disconti-
nuity, and, therefore, it is pinned in the vicinity of the dis-
continuity, i.e., it may bend under the action of the Lorentz
force, but does not move away. Nevertheless, when the Lor-
entz force becomes strong enough, it tears off a whole inte-
ger fluxon out of a � vortex. The fluxon moves away along
the junction, while a �−2� vortex is left at the discontinuity.
Further time evolution leads to the switching of the 0-� LJJ
into the voltage state. This process was initially described for
the case of a semifluxon ��=��.28 It takes place when the
normalized bias current 
= I / Ic0 reaches the critical �depin-
ning� current of34,38


c��� = � sin��/2�
�/2

�, ��� � 2� , �1�

where Ic0 is the “intrinsic” critical current, which corre-
sponds to the measurable critical current if �=0.

In the presence of quantum or thermal fluctuations, the
escape process described above will take place with finite
probability already at 
�
c. In this case, the phase ��x� can
tunnel through the barrier or escape over the barrier.
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In this paper, we study the escape process of an arbitrary
fractional Josephson vortex by mapping the Josephson phase
dynamics to the dynamics of a fictitious particle in an effec-
tive one-dimensional metastable potential. This allows us to
predict the escape rates as a function of the bias current and
of the vortex topological charge � in the thermal and quan-
tum domains.

We consider arbitrary fractional vortices for the following
reasons. First, since an electronically tunable � and � can be
realized in experiment using a LJJ with injectors,31,36 the
predictions made here can be tested in the whole range of �.
Of course, our results can be also used for LJJ technologies
with fixed values of �. Although, at the moment, only the
0-� JJs ��= ��� are realized, e.g., d-wave superconductor-
based LJJs16–19 or LJJs with ferromagnetic barrier,20 other
fixed values of the phase jump are also possible, e.g., 0-� /2
JJ.39,40 Our theory presented below covers all these cases in
advance. Second, both in experiment and theory it is good to
have a tuning parameter such as �, which allows to bring the
system continuously to simple limiting cases such as an
empty LJJ ��=0� or a single integer fluxon ��=2��. In this
way one can see the connection with the known physics and
even understand it better.

II. MODEL

For our calculations we use dimensionless quantities.
Lengths are measured in units of the Josephson length �J,
times are measured in units of �p

−1, where �p is the plasma
frequency, energies are measured in units of EJ�J, where EJ
is the Josephson energy per length, and currents are mea-
sured in units of the intrinsic critical current Ic0 of the Jo-
sephson junction.

The dynamics of a fractional vortex in an infinitely long
0-� Josephson junction with an applied bias current 
 is then
described by the sine-Gordon equation for the continuous
phase33 � �dissipation is neglected�

�xx�x,t� − �tt�x,t� − sin���x,t� + �H�x�� = − 
 , �2�

where H�x� is given by

H�x� = 	0 for x � 0

1 for x � 0.

 �3�

This equation can be derived from the Lagrangian density

L =
1

2
� ��

�t
�2

−
1

2
� ��

�x
�2

− U��,x� , �4�

where the potential-energy density U�� ,x� is given by

U��,x� = 1 − cos�� + �H�x�� − 
� . �5�

The boundary conditions for ��x , t� are

�x�− �,t� = �x�+ �,t� = 0. �6�

At x=0 the Josephson phase ��x , t� and its derivative �x�x , t�
are continuous, i.e.,

��0+,t� = ��0−,t� = ��0,t� , �7a�

�x�0+,t� = �x�0−,t� = �x�0,t� . �7b�

III. CLASSICAL DYNAMICS

As already discussed in the introduction, at a critical bias
current 
c, Eq. �1�, the system switches between two types of
solutions. Before we discuss this process in more detail, we
briefly discuss a similar process in a pointlike Josephson
junction.

Here the switching between two types of solutions at a
critical bias current is usually visualized by a particle moving
in a tilted washboard potential. If the bias current is below a
critical value the potential has minima and stationary solu-
tions, where the particle is trapped in one of the minima, are
possible. If the bias current exceeds a critical value, the
minima disappear and the particle is running down the wash-
board potential. The escape of a fractional vortex in a 0-�
long Josephson junction may be considered as a generaliza-
tion of this process.

In the present paper we will often use only the vortex
topological charge �, not specifying at which discontinuity it
is pinned. In fact, it does not matter, as only the value of � is
important. For simplicity, in all derivations including � we
will assume that we deal with a direct vortex having �=−�.

For �
��
c��� �see Eq. �1��, the stationary solutions of
Eq. �2� are fractional vortices with a topological charge �
pinned at the vicinity of the phase discontinuity. They may
bend under the action of the Lorentz force but do not move
away. Figures 1�a� and 1�b� show the stationary solutions of
Eq. �2� for 
=0 and 
�
c. For 
=0 the vortex is symmetric
with respect to the phase discontinuity at x=0 whereas for

�0 it bends under the influence of the Lorentz force.

When the Lorentz force becomes strong enough, i.e.,
when the bias current 
 exceeds the critical value 
c���, Eq.
�1�, the stationary solutions discussed above can not exist.
Instead, a whole integer fluxon is torn away from the vortex
with a topological charge � and moves along the junction,
while a vortex with a topological charge �−2� is left at the
phase discontinuity. The magnetic field dynamics is pre-
sented in Fig. 1�c�. Further time evolution leads to the
switching of the LJJ into the voltage state.28

For 
=0 the stationary solution of the sine-Gordon equa-
tion �2� corresponding to a � vortex is given by33

�0�x� = 
 4 arctan�tan��

8
�e+x� , x � 0;

� − 4 arctan�tan��

8
�e−x� , x � 0. � �8�

For finite values of 
 no analytical expressions are available.
Therefore, we have solved Eq. �2� numerically.

If we include quantum or thermal fluctuations the switch-
ing between the two types of solutions discussed above will
take place with finite probability before the bias current
reaches its critical value. The main topic of the present paper
is to calculate these quantum and thermal escape rates for
fractional vortices.

Our calculations are based on eigenmodes of the station-
ary solution of the sine-Gordon equation �2�. Therefore we
now discuss the properties of the stationary solution and the
eigenmodes of Eq. �2� before we derive an effective potential
for the escape process.
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IV. PROPERTIES OF THE STATIONARY SOLUTION

The stationary solution �0�x� of Eq. �2� follows from:

�0��x� − U���0�x�,x� = �0��x� − sin��0�x� + �H�x�� + 
 = 0.

�9�

Without solving this equation we can derive some properties
of �0�x� which will be useful for our calculations. Multiply-
ing Eq. �9� with �0��x� in the regions x�0 and x�0 leads to

−
1

2
��0��x��2 + U��0�x�,x� = const. �10�

Using the boundary conditions �6� for the stationary solution
and the abbreviations

�− = �0�− ��; �11a�

�+ = �0�+ �� + �; �11b�

�0 = �0�0� + �/2, �11c�

we obtain

x � 0:
1

2
��0��x��2

= U��0�x�,x� − U��0�− ��,− ��

= cos �− − cos��0�x�� + 
��− − �0�x��

x � 0:
1

2
��0��x��2

= U��0�x�,x� − U��0�+ ��,+ ��

= cos �+ − cos��0�x� + �� + 
��+ − �0�x� − �� .

�12�

These two equations allow us to express �0��x� in terms of
�0�x� and �� �or �0�����. Furthermore, since �0�x� and
�0��x� are continuous at x=0, we have

U��0�0�,0−� − U��0�− ��,− ��

= U��0�0�,0+� − U��0�+ ��,+ �� �13�

which we can rewrite in the form

cos �+ − cos �− + 
��+ − �− − ��

= cos��0 + �/2� − cos��0 − �/2�

= − 2 sin
�

2
sin �0. �14�

For x→ �� the phase �0�x� approaches a constant value,
which minimizes the potential-energy density U��0�x� ,x�,
Eq. �5�. From this condition we find

sin �� = 
, cos �� � 0 ⇒ �� = arcsin 
 + 2n�� ,

cos �� = �1 − 
2. �15�

Using this result, Eq. �14� can be reduced to


�2n� − �� = − 2 sin
�

2
sin �0, �16�

where n=n+−n− is the number of fluxons already present in
the system. Obviously, this condition cannot be fulfilled for
arbitrary values of 
. At a critical value 
c we will find
sin �0= �1. For larger values of 
, Eq. �16� has no solution
for �0, and the stationary solution �0�x� cannot exist. For
n=0, i.e., �+=�−, we obtain the critical current given in
Eq. �1�.

V. EIGENMODES

The stability of the stationary solution �0�x� can be ana-
lyzed with the help of the eigenmodes of the sine-Gordon
equation �2�. To find these eigenmodes we insert the ansatz

FIG. 1. �a� Phase profiles ��x� and �b� magnetic field profiles
�x�x� corresponding to the static solutions �vortex with a topologi-
cal charge � pinned at the phase discontinuity at x=0� of the sine-
Gordon equation �2� with �=� and 
=0 �gray�, and 
=0.6 �black�.
Note, that 
c���=2 /��0.635, see Eq. �1�. �c� Shows the depinning
dynamics, i.e., the magnetic field profile �x�x� as a function of time
after the bias current 
 was abruptly increased from 0.63 �still static
solution� to 0.64 �no static solution� at t=0. One can see a fluxon
separating and moving to the left and an antisemifluxon left at the
discontinuity.
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��x,t� = �0�x� + ��x�e−i�t �17�

into the sine-Gordon equation �2� and linearize it, assuming
���x���1. Since �0�x� solves the stationary sine-Gordon
equation, we obtain the Schrödinger equation

− �n��x� + U���0�x�,x��n�x�

= − �n��x� + cos��0�x� + �H�x���n�x� = �n
2�n�x�

�18�

for the eigenmodes �n�x�, where the index n enumerates the
eigenmodes. In this Schrödinger equation, the potential is
determined by the stationary solution �0�x�. Since the
boundary conditions for ��x , t� are already taken into ac-
count by the stationary solution �0�x�, the boundary condi-
tions for the eigenmodes �n�x� read

�n��− �� = �n��+ �� = 0. �19�

At x=0 the phase ��x , t� and its derivative �x�x , t� are con-
tinuous, see Eq. �7�. Since the stationary solution �0�x� and
its derivative �0��x� are continuous at x=0, �n�x� and �n��x�
have to be continuous at x=0 as well, i.e.,

�n�0+� = �n�0−� = �n�0�; �20a�

�n��0
+� = �n��0

−� = �n��0� . �20b�

As long as all eigenvalues �n
2 of the Schrödinger equation

�18� are positive, the stationary solution �0�x� is stable. As
soon as one eigenvalue �n

2 becomes negative, the stationary
solution �0�x� is unstable. Therefore, at the critical current

=
c the lowest eigenvalue, denoted by �0

2, becomes zero.
We now briefly show that at 
=
c the lowest eigenmode

�0�x� is the derivative of the stationary solution, i.e., �0�x�
=C�0��x�. By taking the derivative of the stationary sine-
Gordon equation �9� in the regions x�0 and x�0 we find

−
d2

dx2�0��x� + cos��0�x� + �H�x���0��x� = 0. �21�

Therefore, we have found the formal solution �0�x�
=C�0��x� of the Schrödinger equation �18� with an eigen-
value �0

2=0.
The boundary conditions �19� and the matching condi-

tions �20� for the eigenmodes introduce additional conditions
for the stationary solution �0�x�

�0����� = C�0����� = 0 ⇒ �0����� = 0, �22a�

�0��0
+� = C�0��0

+� = �0��0
−� = C�0��0

−� ⇒ �0��0
+� = �0��0

−� .

�22b�

Using the stationary sine-Gordon equation �9� and the abbre-
viations defined in Eq. �11�, we can rewrite these conditions
in the form

sin �− = sin �+ = 
 , �23a�

sin��0 − �/2� = sin��0 + �/2� ⇒ sin
�

2
cos �0 = 0.

�23b�

The first condition is fulfilled for any value of 
, see Eq.
�15�, whereas the second condition is only true for 
=
c,
where we have sin �0= �1 and cos �0=0, see the discussion
after Eq. �16�. Therefore, �0�x�=C�0��x� is only an eigen-
mode for 
=
c, see also Ref. 41.

VI. EFFECTIVE POTENTIAL

The phase ��x , t� can be written in the form

��x,t� = �0�x� + �
n

qn�t��n�x� . �24�

By inserting this expansion into the Lagrangian density �4�
and integrating over x we can derive a Lagrangian for the
mode amplitudes qn�t�, which describes the motion of a fic-
titious particle in many dimensions. For 
 close to 
c the
eigenfrequency �0 approaches zero, whereas the other eigen-
frequencies remain finite. Around the minimum at qn=0 the
potential will be “flat” in the direction of q0 and “steep”
along the other directions. Therefore, we expect that at low
energies, a particle trapped in the minimum of the potential
will move along q0. Motivated by this simple picture, we
only take into account the dynamics of the mode amplitude
q0�t�. To simplify the notation we denote the amplitude of the
eigenmode �0�x� by q�t�.

The Lagrangian for q�t� can be derived by inserting the
ansatz

��x,t� � �0�x� + q�t��0�x� �25�

into the Lagrangian density �4�. Our simplified Lagrangian
reads

L = �
−�

+�

Ldx =
1

2
q̇2�t��

−�

+�

�0
2�x�dx

−
1

2
�

−�

+�

��0��x� + q�t��0��x��2dx

− �
−�

+�

U��0�x� + q�t��0�x�,x�dx , �26�

where L and U are defined in Eqs. �4� and �5�. Since we
want to describe the escape of a particle from a metastable
potential we only take in to account terms up to third order in
q�t� and use the approximation

U��0�x� + q�t��0�x�,x� � U��0�x�,x� + q�t�U���0�x�,x��0�x�

+
1

2
q2�t�U���0�x�,x��0

2�x�

+
1

6
q3�t�U���0�x�,x��0

3�x� . �27�

After omitting a constant term we obtain
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L =
1

2
q̇2�t��

−�

+�

�0
2�x�dx

− q�t��
−�

+�

��0��x��0��x� + U���0�x�,x��0�x��dx

−
1

2
q2�t��

−�

+�

���0��x��2 + U���0�x�,x��0
2�x��dx

−
1

6
q3�t��

−�

+�

U���0�x�,x��0
3�x�dx . �28�

Performing two partial integrations and taking into account
the boundary conditions for �0�x� and �0�x� leads to

L =
1

2
q̇2�t��

−�

+�

�0
2�x�dx

− q�t��
−�

+�

�− �0��x� + U���0�x�,x���0�x�dx

−
1

2
q2�t��

−�

+�

�− �0��x� + U���0�x�,x��0�x���0�x�dx

−
1

6
q3�t��

−�

+�

U���0�x�,x��0
3�x�dx . �29�

The linear term vanishes since �0�x� is the stationary solu-
tion of the stationary sine-Gordon equation �9�. In the qua-
dratic term we can use −�0��x�+U���0�x� ,x��0�x�=�0

2�0�x�,
see Eq. �18�. Therefore, the Lagrangian can be written in the
form

L =
1

2
Mq̇2�t� −

1

2
M�0

2q2�t� −
1

6
Gq3�t� , �30�

where M and G are given by

M = �
−�

+�

�0
2�x�dx ,

G = �
−�

+�

U���0�x�,x��0
3�x�dx

= − �
−�

+�

sin��0�x� + �H�x���0
3�x�dx . �31�

This Lagrangian describes the motion of a fictitious par-
ticle of mass M along collective coordinate q in the effective
potential

Veff�q� =
1

2
M�0

2q2 +
1

6
Gq3, �32�

which can be characterized by the frequency �0 for small
oscillations around the minimum at q=0 and a barrier height

�V =
2M3�0

6

3G2 . �33�

These two parameters determine the escape rates in the ther-
mal and in the quantum regime, see Sec. VIII. Note, that the
frequency for small oscillations around the minimum and the
eigenfrequency of the lowest eigenmode, calculated from Eq.
�18�, are the same.

The calculation of the present section leads to the follow-
ing procedure to determine the frequency �0 and the barrier
height �V. �i� For a given bias current 
�
c we solve the
stationary sine-Gordon equation �9� numerically and find the
stationary solution �0�x�. �ii� For this stationary solution
�0�x� we solve the Schrödinger equation �18� numerically
and find the eigenmode �0�x� and the corresponding eigen-
value �0

2. �iii� Using the eigenmode �0�x� we calculate M
and G numerically using Eq. �31� to find the barrier height
�V from Eq. �33�.

VII. ANALYTICAL APPROXIMATIONS

A. Approximations for M and G

The approximations for M and G for 
 close to 
c are
straightforward. Since M and G remain finite at 
=
c we
replace M and G by their values at 
=
c and use the unnor-
malized eigenmode �0�x�=�0��x�, i.e.,

M � �
−�

+�

��0��x��2dx , �34a�

G � − �
−�

+�

sin��0�x� + �H�x����0��x��3dx . �34b�

These two integrals can be calculated analytically to a large
extent. As shown in the Appendix, the expressions for M and
G can be written in the form

M = � �2�
�−

�0−�/2
�cos �− − cos � + 
c��− − ��d�

� �2�
�0+�/2

�+ �cos �+ − cos � + 
c��+ − ��d� �35�

and

G = 2 sin
�

2
sin �0�cos �+ + cos �− + 
c��+ + �− − 2�0�� ,

�36�

where �+, �−, and �0 follow from the behavior of the sta-
tionary solution for 
=
c at x= �� and x=0, see Eq. �11�.
The upper sign for M applies to vortices with �0��x��0,
whereas the lower sign applies to vortices with �0��x��0.

For our examples in Sec. IX we use vortices with

�0�− �� = arcsin 
 , �37a�

�0�+ �� = arcsin 
 + � �37b�

to satisfy Eq. �15�, i.e., direct vortices with �=−�. In the
limit 
→
c we therefore have �+=�−=arcsin 
c=�c which

THEORY OF FRACTIONAL VORTEX ESCAPE IN A LONG… PHYSICAL REVIEW B 80, 134515 �2009�

134515-5



for positive bias currents implies �0=� /2. Moreover, �0��x�
is positive for −2����0 and negative for 0���2�. In
this case the expressions �35� and �36� for M and G reduce to

M = �2�
��−����/2

��+����/2
�cos �c − cos � + 
c��c − ��d� ,

�38a�

G = 4 sin
�

2
�cos �c + 
c��c − �/2�� . �38b�

B. Approximations for �0 and �V

Since �0
2 vanishes for 
→
c we cannot use its value at


c. Instead we use the stationary solution �0�x� and the
eigenmode �0�x�=�0��x� at 
=
c to evaluate Lagrangian �29�
for 
�
c. In this case, the quadratic term in Eq. �29� van-
ishes since U���0�x� ,x� does not depend on 
. The linear
term, however, does not vanish since �0�x� is not the station-
ary solution for 
�
c. Here we have

− �0��x� + U���0�x�,x� = − �0��x� + sin��0�x� + �H�x�� − 


= 
c − 
 . �39�

The remaining integral can easily be calculated and the ap-
proximate effective potential reads

Veff�q� � ��
c − 
�q +
1

6
Gq3, �40�

where we have used

�
−�

+�

�0�x�dx = �
−�

+�

�0��x�dx = �0�+ �� − �0�− �� = � .

�41�

For this potential we find the frequency

�0
cr = �2G�

M2 �
 − 
c��1/4

�42�

for small oscillations around the minimum and the barrier
height

�Vcr =
2

3
�G��2�

G
�
 − 
c��3/2

=
2M3��0

cr�6

3G2 . �43�

The first expression for �Vcr does not depend on M whereas
the second expression for �Vcr agrees with Eq. �33�, except
that now the approximate expressions for M, G, and �0 are
used.

C. Pointlike Josephson junction

We would like to compare our results to the pointlike JJ in
the following sense. At given �, in experiments one sees a
certain value of Ic and can calculate the expected eigenfre-
quency, the barrier height and escape rates using a short JJ
model which ignores phase discontinuities and details related
to the internal structure of the solution. We compare these

results with our results for a fractional vortex. To obtain the
results from the pointlike JJ model we insert the values of 

and 
c for a long 0-� JJ into the well-known expressions for
a pointlike JJ42 and obtain

�Vpt = 2l
c��1 − � 



c
�2

−




c
arccos





c
� �44�

and

�0
pt = �
c�1 − � 



c
�2�1/4

, �45�

where l is the normalized length of the Josephson junction.

VIII. ESCAPE RATES

In Sec. VI we have found that we can map the escape of
a fractional vortex to the escape of a particle from a one-
dimensional cubic metastable potential which is character-
ized by the frequency �0 for small oscillations around the
minimum and a barrier height �V. For such potentials ap-
proximate expressions for escape rates are available in the
literature. As we use scaled quantities in the present paper we
introduce the scaled temperature � which measures tempera-
tures in units of EJ�J /kB and the dimensionless parameter
�=��p / �EJ�J� which plays the role of an effective �.

In the classical regime, the escape of a particle from a
metastable potential is due to thermal hopping. The escape
rate �measured in units of �p� for such processes is given by
Kramers’ formula43,44

�th = �
�0

2�
e−�V/�, �46�

where the prefactor � depends on the damping constant � of
the system. For � /�0�5� / �36�V� it reads

� =�1 + � �

2�0
�2

−
�

2�0
. �47�

If the damping constant � becomes too small, it has to be
replaced by

� =
36��V

5��0
. �48�

In the quantum regime, the escape of a particle from a
metastable potential is due to tunneling trough the energy
barrier. In the semiclassical limit the decay rate of the ground
state of a cubic metastable potential is given by44–46

�qm = �60�0� 18�V

5���0
exp�−

36

5

�V

��0
� . �49�

According to Ref. 44 for Ohmic damping the crossover
between thermal hopping and quantum tunneling occurs at
the temperature

�� = �
��0

2�
, �50�

where � is given by Eq. �47�.
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Before we present our results we have a closer look at
Eqs. �46� and �49�, in particular for small damping where we
can use ��1. For both equations, the escape rates should be
exponentially small, i.e., the exponents �V /� and
36�V / �5��0� should be large. Using Eq. �33� we find that
Kramers’ formula, Eq. �46�, can be applied if �0 satisfies

�0
6 �

3G2

2M3�, �0
5 �

5G2

24M3

�

�
, �0 � �/2. �51�

The last two conditions allow us to use ��1. The semiclas-
sical expression for the quantum mechanical escape rate �49�
can be used for

�0
5 �

5G2

24M3�, �0 � �/� . �52�

If the second condition is violated, the system will not be
inthe quantum mechanical ground state, and we have to take
into account the quantum decay from exited states which is
not included in Eq. �49�. For ��0��V �many “bound”
states in the metastable potential� we may thermally average
the decay rates from the ground state and the excited states.
For details see Ref. 44.

The conditions introduced so far define lower bounds for
�0. On the other hand our simple model of a particle moving
in a one-dimensional potential is only valid for 
 close to 
c
where �0 becomes small. The main assumption we used to
map the full problem to a one-dimensional problem was that
�0

2 is much smaller than the other eigenvalues of the
Schrödinger equation �18�. Therefore, we have to require
�0

2��1
2, where �1

2 is the eigenvalue of the first excited state
of the Schrödinger equation �18�, or the edge of the plasma
band.

IX. RESULTS

Our numerical results are based on Eqs. �9� and �18�. We
solve these equations numerically for a symmetric junction
with a length of 20�J to emulate an infinitely long JJ.

For our examples we use the following JJ parameters:
critical current density jc=100 A /cm2, specific capacitance
C=4.2 �F /cm2, junction width w=1 �m. This corresponds
to �p=2�
42.8 GHz and EJ�J=78.4 meV=909 K. For
these parameters, T and � are related via T= �EJ�J /kB��
�909 K
�, and the value of � is �=2.3
10−3. Further-
more, we assume that we are in the semiclassical limit,
where we can apply Eq. �49� and that we can use ��1 in
Eqs. �46� and �50�.

A. Comparison of different methods

Before we present our results for escape rates, we first
compare the approximations for �0 and �V presented in Sec.
VII to the corresponding numerical values based on the
single-mode approximation of Sec. VI. For this purpose we
calculate the eigenfrequency and energy barrier using three
approaches: �a� single-mode approximation for 
�
c, Eq.
�18� for n=0 and Eq. �33�, denoted with nu as superscript;
�b� approximation at 
=
c, Eqs. �42� and �43�, denoted with

cr as superscript; and �c� pointlike JJ formulas �44� and �45�,
denoted with pt as superscript.

The eigenfrequencies are shown in Fig. 2. At �=0 the
eigenfrequency �0

nu coincides with �0
pt, while �0

cr provides a
very reasonable approximation. At larger values of � both
�0

pt and �0
cr provide good approximations to �0

nu.
For our single-mode approximation to be valid, we have

to make sure that the higher eigenfrequencies �n are much

FIG. 2. �Color online� The frequencies �0
cr, �0

pt, and �0
nu as a

function of the bias current 
 for different values of �. The gray
area indicates the plasma band, which was drawn by filling up the
area above �1

nu�
�.
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larger than �0. From Fig. 2 one can see that this is not the
case for small values of � where the eigenfrequency of a
fractional vortex is close to the edge of the plasma band
�shown in gray�. Therefore, the single-mode approximation
fails to describe the escape process in a long JJ without
discontinuities. On the other hand, Fig. 2 shows the plasma
band for an infinitely long JJ �approximated by l=20�J here�.
For a JJ of finite normalized length l the plasma band con-
sists of a set of discrete frequencies �n, where the spacing
between �n is roughly inversely proportional to l. For mod-
erate and especially for small values of l the difference be-

tween �0 and the other eigenfrequency becomes large, and
the single-mode approximation works again even for �→0
�the pointlike JJ formula is valid�.

The energy barrier calculated using different methods is
shown in Fig. 3. For small values of �, �Vpt provides an
excellent approximation to �Vnu as expected in this limit,
while �Vcr quite overestimates the barrier. The latter happens
because �Vcr is derived for an infinite LJJ, where at �=0 the
phase string �=const escapes as a whole, thus having the
barrier �l=�. Note, that we have chosen l=20 to emulate an
infinitely long JJ as the vortex solution is localized on the
length scale 1� l. However, for �→0 the phase becomes flat
and looses its localization, so that both �Vnu and �Vpt be-
come �l, whereas �Vcr does not depend on l. In any case, for
�→0 the single �lowest� mode approximation does not
work, so that one does not have to worry about the discrep-
ancies in �V in this limit. For large values of � ��=�� the
situation reverses: �Vcr approximates �Vnu very well, while
�Vpt gives overestimated values. The latter is expected as it
is easier to activate a bent phase string starting the activation
from some point than to move a flat string simultaneously
over the barrier. It seems that starting from ��0.2� the
values of �Vcr provide good approximations to �Vnu.

B. Quantum tunneling

We use the numerically calculated values for the eigenfre-
quency �0

nu and barrier height �Vnu and apply the semiclas-

FIG. 3. �Color online� The energy barriers �Vcr, �Vpt, and �Vnu

as a function of the bias current 
 for different values of �. Note
that �Vcr diverges for �→0. Therefore, we have plotted it for �
=10−7� in �a�.

FIG. 4. �Color online� Quantum escape rates �qm as a function
of the bias current 
 for different values of �.

FIG. 5. �Color online� Thermal escape rates �th as a function of
the bias current 
 for different temperatures. Dots represent the
quantum escape rate �qm. All escape rates are calculated for �=�.
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sical formula �49� to these values to calculate quantum tun-
neling rates. The results are shown in Fig. 4. It turns out that
the escape rate is larger, i.e., the vortex escapes easier, for
larger values of �. This result is qualitatively understandable
because for �→0 the escape process reminds more and more
the escape of the flat string from the metastable minimum
and should scale with the JJ length.

C. Thermal vs quantum escape

We use the numerically calculated values for the eigenfre-
quency �0

nu and barrier height �Vnu and apply Eq. �46� with
�=1 and Eq. �49� to calculate escape rates at different tem-
peratures T, as shown in Fig. 5 for �=�. The dots represent
the quantum escape rate. We remind that these rates were
obtained using the Eqs. �46� and �49� that are not valid very
close to 
c���, since in this case the escape rates are not
exponentially small. Estimations using Eqs. �51� and �52�
show that expression �46� at T=100 mK and expression �49�
become invalid for 
�0.999
c���. One can see that for T
=100 mK the two escape rates agree very well for 
 not
very close to 
c. We may therefore define a crossover tem-
perature T��100 mK—independent of 
 in the range of
validity of Eqs. �46� and �49�.

On the other hand, for the parameters used above Eq. �50�
with �=1 and 
=0 gives T��330 mK. According to Fig.
2�d� in the region of interest the eigenfrequency �0�� ,
� is
about three times smaller than �0�� ,0�. Thus Eq. �50� pre-
dicts T��110 mK in this region.

X. CONCLUSIONS

We have investigated the thermal and quantum escape of
an arbitrary fractional Josephson vortex close to its depin-
ning current in an infinitely long Josephson junction. By us-
ing a single �lowest� mode approximation, we have mapped
the dynamics of an infinite dimensional system to the prob-
lem of a pointlike particle escaping from a 1D metastable
cubic potential. For small topological charge, the single-

mode approximation fails because the lowest eigenmode is
not well separated from the rest of the excitation spectrum.
Thus, the lowest mode approximation cannot be used to de-
scribe the escape in a conventional long JJ ��=0�.

In the region of validity of the single-mode approximation
we have calculated the eigenfrequency and the barrier height
numerically and analytically close to the depinning current.
Then we have used Kramers’ formula and a semiclassical
expression for thermal and quantum escape rates, respec-
tively, to compare escape rates of vortices with different to-
pological charges and find the thermal-to-quantum crossover
temperature. We have found that vortices with a larger topo-
logical charge escape easier. For typical experimental param-
eters the crossover temperature lays in the range of 100 mK
as for many other JJ systems. These results can be directly
compared to experiments. For example, recently47 the ther-
mal escape of a fractional vortex in a LJJ with an artificially
created discontinuity has been studied as a function of � and
a good agreement between the experimental data and the
theory presented here was found in the limit of large junction
length and vortex topological charge. The macroscopic quan-
tum tunneling experiments on this system are now in
progress in the Tübingen group.
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APPENDIX: INTEGRALS

In this appendix we evaluate the integrals for M and G.
The calculations of this appendix are based on the unnormal-
ized eigenmode �0�x�=�0��x� which is only valid for 
=
c.
Furthermore, we use the abbreviations �+, �−, and �0 as
defined in Eq. �11�.

With the help of Eq. �12� the integral in the definition of
G can be evaluated analytically for 
=
c

G = − �
−�

+�

sin��0�x� + �H�x����0��x��3dx = − �
−�

0

sin��0�x����0��x��3dx − �
0

�

sin��0�x� + ����0��x��3dx

= − 2�
�0�−��

�0�0�

sin ��cos �− − cos � + 
c��− − ���d� − 2�
�0�0�

�0�+��

sin�� + ���cos �+ − cos�� + �� + 
c��+ − � − ���d�

= − 2�
�−

�0−�/2

sin ��cos �− − cos � + 
c��− − ���d� − 2�
�0+�/2

�+

sin ��cos �+ − cos � + 
c��+ − ���d�

= − 2�1

2
cos2 � − cos �− cos � − 
c sin � − 
c��− − ��cos ��

�−

�0−�/2

− 2�1

2
cos2 � − cos �+ cos � − 
c sin � − 
c��+ − ��cos ��

�0+�/2

�+

= − cos2��0 − �/2� − 2
c sin��0 − �/2� + 2 cos��0 − �/2��cos �− + 
c��− − �0 + �/2�� − cos2 �− + cos2 �+

+ 2
c�sin �− − sin �+� + cos2��0 + �/2� − 2
c sin��0 + �/2� − 2 cos��0 + �/2��cos �+ + 
c��+ − �0 − �/2�� . �A1�

Using Eqs. �14� and �23�we finally arrive at
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G = 2 sin
�

2
sin �0�cos �+ + cos �− + 
c��+ + �− − 2�0�� . �A2�

In a similar way we can derive an expression for M. With the help of Eq. �12� we obtain

M = �
−�

+�

��0��x��2dx = �
−�

0

��0��x��2dx + �
0

+�

��0��x��2dx

= � �2�
�0�−��

�0�0�
�cos �− − cos � + 
c��− − ��d� � �2�

�0�0�

�0�+��
�cos �+ − cos�� + �� + 
c��+ − � − ��d�

= � �2�
�−

�0−�/2
�cos �− − cos � + 
c��− − ��d� � �2�

�0+�/2

�+ �cos �+ − cos � + 
c��+ − ��d� . �A3�

The upper sign applies to vortices with �0��x��0 whereas the lower sign applies to vortices with �0��x��0.
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